Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38629723

RESUMO

Two-dimensional (2D) gallium selenide (GaSe) holds great promise for pioneering advancements in photodetection due to its exceptional electronic and optoelectronic properties. However, in conventional photodetectors, 2D GaSe only functions as a photosensitive layer, failing to fully exploit its inherent photosensitive potential. Herein, we propose an ultrasensitive photodetector based on out-of-plane 2D GaSe/MoSe2 heterostructure. Through interfacial engineering, 2D GaSe serves not only as the photosensitive layer but also as the photoconductive gain and passivation layer, introducing a photogating effect and extending the lifetime of photocarriers. Capitalizing on these features, the device exhibits exceptional photodetection performance, including a responsivity of 28 800 A/W, specific detectivity of 7.1 × 1014 Jones, light on/off ratio of 1.2 × 106, and rise/fall time of 112.4/426.8 µs. Moreover, high-resolution imaging under various wavelengths is successfully demonstrated using this device. Additionally, we showcase the generality of this device design by activating the photosensitive potential of 2D GaSe with other transition metal dichalcogenides (TMDCs) such as WSe2, WS2, and MoS2. This work provides inspiration for future development in high-performance photodetectors, shining a spotlight on the potential of 2D GaSe and its heterostructure.

2.
Nanoscale ; 16(14): 6837-6852, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38501176

RESUMO

Lead-free double perovskites (DPs) with superior environmental stability and high defect tolerance have attracted considerable attention and exhibit great promise in photodetectors, solar cells, lighting devices, etc. However, achieving optical modulation and high photoluminescence quantum yield using this kind of material remains a challenge. Rare earth ions feature abundant energy levels and outstanding photophysical properties. Incorporating rare earth ions into lead-free DPs is an effective strategy to improve their optical performances, which have great effects on night-vision and light emitting diodes. Consequently, in this mini-review, we summarize the synthesis methods, optical properties, issues, and multifunctional applications of lead-free DPs described in recent years. The performances of DPs can be modulated via rare earth doping, which involves the extension of luminescence range, the improvement of PLQY, the realization of multi-mode excitation, and the regulation of luminescence color. We hope that this review will provide some insights into luminescence modulation and applications of lead-free DPs.

3.
ACS Appl Mater Interfaces ; 16(11): 13927-13937, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456299

RESUMO

Two-dimensional van der Waals (2D vdW) heterostructure photodetectors have garnered significant attention for their potential applications in next-generation optoelectronic systems. However, current 2D vdW photodetectors inevitably encounter compromises between responsivity, detectivity, and response time due to the absence of multilevel regulation for free and photoexcited carriers, thereby restricting their widespread applications. To address this challenge, we propose an efficient 2D WS2/CuInP2S6 vdW heterostructure photodetector by combining band engineering and ferroelectric modulation. In this device, the asymmetric conduction and valence band offsets effectively block the majority carriers (free electrons), while photoexcited holes are efficiently tunneled and rapidly collected by the bottom electrode. Additionally, the ferroelectric CuInP2S6 layer generates polarization states that reconfigure the built-in electric field, reducing dark current and facilitating the separation of photocarriers. Moreover, photoelectrons are trapped during long-distance lateral transport, resulting in a high photoconductivity gain. Consequently, the device achieves an impressive responsivity of 88 A W-1, an outstanding specific detectivity of 3.4 × 1013 Jones, and a fast response time of 37.6/371.3 µs. Moreover, the capability of high-resolution imaging under various wavelengths and fast optical communication has been successfully demonstrated using this device, highlighting its promising application prospects in future optoelectronic systems.

4.
Small ; 20(9): e2305951, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37817356

RESUMO

Conductive microfibers play a significant role in the flexibility, stretchability, and conductivity of electronic skin (e-skin). Currently, the fabrication of conductive microfibers suffers from either time-consuming and complex operations or is limited in complex fabrication environments. Thus, it presents a one-step method to prepare conductive hydrogel microfibers based on microfluidics for the construction of ultrastretchable e-skin. The microfibers are achieved with conductive MXene cores and hydrogel shells, which are solidified with the covalent cross-linking between sodium alginate and calcium chloride, and mechanically enhanced by the complexation reaction of poly(vinyl alcohol) and sodium hydroxide. The microfiber conductivities are tailorable by adjusting the flow rate and concentration of core and shell fluids, which is essential to more practical applications in complex scenarios. More importantly, patterned e-skin based on conductive hydrogel microfibers can be constructed by combining microfluidics with 3D printing technology. Because of the great advantages in mechanical and electrical performance of the microfibers, the achieved e-skin shows impressive stretching and sensitivity, which also demonstrate attractive application values in motion monitoring and gesture recognition. These characteristics indicate that the ultrastretchable e-skin based on conductive hydrogel microfibers has great potential for applications in health monitoring, wearable devices, and smart medicine.


Assuntos
Hidrogéis , Pele , Condutividade Elétrica , Eletricidade , Alginatos
5.
Materials (Basel) ; 16(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068116

RESUMO

By virtue of the widely tunable band structure, dangling-bond-free surface, gate electrostatic controllability, excellent flexibility, and high light transmittance, 2D layered materials have shown indisputable application prospects in the field of optoelectronic sensing. However, 2D materials commonly suffer from weak light absorption, limited carrier lifetime, and pronounced interfacial effects, which have led to the necessity for further improvement in the performance of 2D material photodetectors to make them fully competent for the numerous requirements of practical applications. In recent years, researchers have explored multifarious improvement methods for 2D material photodetectors from a variety of perspectives. To promote the further development and innovation of 2D material photodetectors, this review epitomizes the latest research progress in improving the performance of 2D material photodetectors, including improvement in crystalline quality, band engineering, interface passivation, light harvesting enhancement, channel depletion, channel shrinkage, and selective carrier trapping, with the focus on their underlying working mechanisms. In the end, the ongoing challenges in this burgeoning field are underscored, and potential strategies addressing them have been proposed. On the whole, this review sheds light on improving the performance of 2D material photodetectors in the upcoming future.

6.
ACS Nano ; 17(14): 13760-13768, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428004

RESUMO

Driven by the rapid development of autonomous vehicles, ultrasensitive photodetectors with high signal-to-noise ratio and ultraweak light detection capability are urgently needed. Due to its intriguing attributes, the emerging van der Waals material, indium selenide (In2Se3), has attracted extensive attention as an ultrasensitive photoactive material. However, the lack of an effective photoconductive gain mechanism in individual In2Se3 inhibits its further application. Herein, we propose a heterostructure photodetector consisting of an In2Se3 photoactive channel, a hexagonal boron nitride (h-BN) passivation layer, and a CsPb(Br/I)3 quantum dot gain layer. This device manifests a signal-to-noise ratio of 2 × 106 with responsivity of 2994 A/W and detectivity of 4.3 × 1014 Jones. Especially, it enables the detection of weak light as low as 0.03 µW/cm2. These performance characteristics are ascribed to the interfacial engineering. In2Se3 and CsPb(Br/I)3 with type-II band alignment promote the separation of photocarriers, while h-BN passivates the impurities on CsPb(Br/I)3 and promises a high-quality carrier transport interface. Furthermore, this device is successfully integrated into an automatic obstacle avoidance system, demonstrating promising application prospects in autonomous vehicles.

7.
Mater Horiz ; 10(9): 3369-3381, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37404203

RESUMO

In this study, cost-efficient atmospheric pressure chemical vapor deposition has been successfully developed to produce well-aligned high-quality monocrystalline Bi2S3 nanowires. By virtue of surface strain-induced energy band reconstruction, the Bi2S3 photodetectors demonstrate a broadband photoresponse across 370.6 to 1310 nm. Upon a gate voltage of 30 V, the responsivity, external quantum efficiency, and detectivity reach 23 760 A W-1, 5.55 × 106%, and 3.68 × 1013 Jones, respectively. The outstanding photosensitivity is ascribed to the high-efficiency spacial separation of photocarriers, enabled by synergy of the axial built-in electric field and type-II band alignment, as well as the pronounced photogating effect. Moreover, a polarization-discriminating photoresponse has been unveiled. For the first time, the correlation between quantum confinement and dichroic ratio is systematically explored. The optoelectronic dichroism is established to be negatively correlated with the cross dimension (i.e., width and height) of the channel. Specifically, upon 405 nm illumination, the optimized dichroic ratio reaches 2.4, the highest value among the reported Bi2S3 photodetectors. In the end, proof-of-concept multiplexing optical communications and broadband lensless polarimetric imaging have been implemented by exploiting the Bi2S3 nanowire photodetectors as light-sensing functional units. This study develops a quantum tailoring strategy for tailoring the polarization properties of (quasi-)1D material photodetectors whilst depicting new horizons for the next-generation opto-electronics industry.

8.
Small Methods ; 7(6): e2201571, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932942

RESUMO

With the rapid development of two-dimensional semiconductor technology, the inevitable chemical disorder at a typical metal-semiconductor interface has become an increasingly serious problem that degrades the performance of 2D semiconductor optoelectronic devices. Herein, defect-free van der Waals contacts have been achieved by utilizing topological Bi2 Se3 as the electrodes. Such clean and atomically sharp contacts avoid the consumption of photogenerated carriers at the interface, enabling a markedly boosted sensitivity as compared to counterpart devices with directly deposited metal electrodes. Typically, the device with 2D WSe2 channel realizes a high responsivity of 20.5 A W-1 , an excellent detectivity of 2.18 × 1012  Jones, and a fast rise/decay time of 41.66/38.81 ms. Furthermore, high-resolution visible-light imaging capability of the WSe2 device is demonstrated, indicating its promising application prospect in future optoelectronic systems. More inspiringly, the topological electrodes are universally applicable to other 2D semiconductor channels, including WS2 and InSe, suggesting its broad applicability. These results open fascinating opportunities for the development of high-performance electronics and optoelectronics.

9.
Adv Mater ; 35(20): e2211562, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893428

RESUMO

High-resolution imaging is at the heart of the revolutionary breakthroughs of intelligent technologies, and it is established as an important approach toward high-sensitivity information extraction/storage. However, due to the incompatibility between non-silicon optoelectronic materials and traditional integrated circuits as well as the lack of competent photosensitive semiconductors in the infrared region, the development of ultrabroadband imaging is severely impeded. Herein, the monolithic integration of wafer-scale tellurene photoelectric functional units by exploiting room-temperature pulsed-laser deposition is realized. Taking advantage of the surface plasmon polaritons of tellurene, which results in the thermal perturbation promoted exciton separation, in situ formation of out-of-plane homojunction and negative expansion promoted carrier transport, as well as the band bending promoted electron-hole pair separation enabled by the unique interconnected nanostrip morphology, the tellurene photodetectors demonstrate wide-spectrum photoresponse from 370.6 to 2240 nm and unprecedented photosensitivity with the optimized responsivity, external quantum efficiency and detectivity of 2.7 × 107  A W-1 , 8.2 × 109 % and 4.5 × 1015  Jones. An ultrabroadband imager is demonstrated and high-resolution photoelectric imaging is realized. The proof-of-concept wafer-scale tellurene-based ultrabroadband photoelectric imaging system depicts a fascinating paradigm for the development of an advanced 2D imaging platform toward next-generation intelligent equipment.

10.
Nanoscale Adv ; 5(3): 675-684, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756495

RESUMO

Two-dimensional (2D) material-based van der Waals (vdW) heterostructures with exotic semiconducting properties have shown tremendous potential in next-generation photovoltaic photodetectors. Nevertheless, these vdW heterostructure devices inevitably suffer from a compromise between high sensitivity and fast response. Herein, an ingenious photovoltaic photodetector based on a WSe2/WS2/p-Si dual-vdW heterojunction is demonstrated. First-principles calculations and energy band profiles consolidate that the photogating effect originating from the bottom vdW heterojunction not only strengthens the photovoltaic effect of the top vdW heterojunction, but also suppresses the recombination of photogenerated carriers. As a consequence, the separation of photogenerated carriers is facilitated and their lifetimes are extended, resulting in higher photoconductive gain. Coupled with these synergistic effects, this WSe2/WS2/p-Si device exhibits both high sensitivity (responsivity of 340 mA W-1, a light on/off ratio greater than 2500, and a detectivity of 3.34 × 1011 Jones) and fast response time (rise/decay time of 657/671 µs) under 405 nm light illumination in self-powered mode. Finally, high-resolution visible-light and near-infrared imaging capabilities are demonstrated by adopting this dual-heterojunction device as a single pixel, indicating its great application prospects in future optoelectronic systems.

11.
Nanoscale Adv ; 5(3): 693-700, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756523

RESUMO

Two-dimensional (2D) magnetic materials are of wide research interest owing to their promising applications in spintronic devices. Among them, chromium chalcogenide compounds are some of the limited available systems that present both high stability in air and high Curie temperatures. Epitaxial growth techniques based on chemical vapour deposition (CVD) have been demonstrated to be a robust method for growing 2D non-layered chromium chalcogenides. However, the growth mechanism is not well-understood. Here, we demonstrate the epitaxial growth of Cr3Te4 nanoplates with high quality on mica. Atomic-resolution scanning transmission electron microscopy (STEM) imaging reveals that the epitaxial growth is based on nanosized chromium oxide seed particles at the interface of Cr3Te4 and mica. The chromium oxide nanoparticle exhibits a coherent interface with both mica and Cr3Te4 with a lattice mismatch within 3%, suggesting that, as a buffer layer, chromium oxide can release the interfacial strain, and induce the growth of Cr3Te4 although there is a distinct oxygen-content difference between mica and Cr3Te4. This work provides an experimental understanding behind the epitaxial growth of 2D magnetic materials at the atomic scale and facilitates the improvement of their growth procedures for devices with high crystalline quality.

12.
Small ; 19(15): e2207615, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36605013

RESUMO

Next-generation imaging systems require photodetectors with high sensitivity, polarization sensitivity, miniaturization, and integration. By virtue of their intriguing attributes, emerging 2D materials offer innovative avenues to meet these requirements. However, the current performance of 2D photodetectors is still below the requirements for practical application owing to the severe interfacial recombination, the lack of photoconductive gain, and insufficient photocarrier collection. Here, a tunneling dominant imaging photodetector based on WS2 /Te heterostructure is reported. This device demonstrates competitive performance, including a remarkable responsivity of 402 A W-1 , an outstanding detectivity of 9.28 × 1013 Jones, a fast rise/decay time of 1.7/3.2 ms, and a high photocurrent anisotropic ratio of 2.5. These outstanding performances can be attributed to the type-I band alignment with carrier transmission barriers and photoinduced tunneling mechanism, allowing reduced interfacial trapping effect, effective photoconductive gains, and anisotropic collection of photocarriers. Significantly, the constructed photodetector is successfully integrated into a polarized light imaging system and an ultra-weak light imaging system to illustrate the imaging capability. These results suggest the promising application prospect of the device in future imaging systems.

13.
ACS Nano ; 16(8): 12852-12865, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35914000

RESUMO

A selective-area oxidation strategy is developed to polarize high-symmetry 2D layered materials (2DLMs). The dichroic ratio of the derived O-WS2/WS2 photodetector reaches ∼8, which is competitive among state-of-the-art polarization photodetectors. Finite-different time-domain simulations consolidate that the polarization-sensitive photoresponse is associated with anisotropic spacial confinement, which gives rise to distinct dielectric contrasts for linearly polarized light of various directions and thus the polarization-dependent near-field distribution. Furthermore, selective-area oxidation treatment brings about dual effects, comprising the in situ formation of seamless in-plane WS2 homojunctions by thickness tailoring and the formation of out-of-plane O-WS2/WS2 heterojunctions. As a consequence, the recombination of photocarriers is markedly suppressed, resulting in outstanding photosensitivity with the optimized responsivity, external quantum efficiency, and detectivity of 0.161 A/W, 49.4%, and 1.4 × 1011 Jones for an O-WS2/WS2 photodetector in a self-powered mode. A scheme of multiplexing optical communications is revealed by harnessing the intensity and polarization state of light as independent transmission channels. Furthermore, dynamic encryption by leveraging the polarization state as a secret key is proposed. In the end, broad universality is reinforced through the induction of linear dichroism within 2D WSe2 crystals. On the whole, this study provides an additional perspective on polarization optoelectronics based on 2DLMs.

14.
Mater Horiz ; 9(9): 2364-2375, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35876307

RESUMO

Low light absorption and limited carrier lifetime are critical obstacles inhibiting further performance improvement of 2D layered material (2DLM) based photodetectors, while scalable fabrication is an ongoing challenge prior to commercialization from the lab to market. Herein, wafer-scale SnS/ZIS hierarchical nanofilms, where out-of-plane SnS (O-SnS) is modified onto in-plane ZIS (I-ZIS), have been achieved by pulsed-laser deposition. The derived O-SnS/I-ZIS photodetector exhibits markedly boosted sensitivity as compared to a pristine ZIS device. The synergy of multiple functionalities contributes to the dramatic improvement, including the pronounced light-trapping effect of O-SnS by multiple scattering, the high-efficiency spatial separation of photogenerated electron-hole pairs by a type-II staggered band alignment and the promoted carrier transport enabled by the tailored electronic structure of ZIS. Of note, the unique architecture of O-SnS/I-ZIS can considerably expedite the carrier dynamics, where O-SnS promotes the electron transfer from SnS to ZIS whilst the I-ZIS enables high-speed electron circulation. In addition, the interlayer transition enables the bridging of the effective optical window to telecommunication wavelengths. Moreover, monolithic integration of arrayed devices with satisfactory device-to-device variability has been encompassed and a proof-of-concept imaging application is demonstrated. On the whole, this study depicts a fascinating functional coupling architecture toward implementing chip-scale integrated optoelectronics.

15.
Nanoscale ; 14(16): 6228-6238, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35403635

RESUMO

Over the past decade, 2D elemental semiconductors have emerged as an ever-increasingly important group in the 2D material family due to their simple crystal structures and compositions, and versatile physical properties. Taking advantage of the relatively small bandgap, outstanding carrier mobility, high air-stability and strong interactions with light, 2D tellurium (Te) has emerged as a compelling candidate for use in ultra-broadband photoelectric technologies. In this study, high-quality centimeter-scale Te nanofilms have been successfully produced by exploiting pulsed-laser deposition (PLD). By performing deposition on pre-patterned SiO2/Si substrates, a Te/Si 2D/3D heterojunction array is formed in situ. To our delight, taking advantage of the relatively small bandgap of Te, the Te/Si photodetectors demonstrate an ultra-broadband photoresponse from ultraviolet to near-infrared (370.6 nm to 2240 nm), enabling them to serve as important alternatives to conventional 2D materials such as MoS2. In addition, an outstanding on/off ratio of ∼108 and a fast response rate (a response/recovery time of 3.7 ms/4.4 ms) are achieved, which is associated with the large band offset and strong interfacial built-in electric field that contribute to suppressing the dark current and separating photocarriers. Beyond these, a 35 × 35 matrix array has been successfully constructed, where the devices exhibit comparable properties, with a production yield of 100% for 100 randomly tested devices. The average responsivity, external quantum efficiency and detectivity reach 249 A W-1, 76 350% and 1.15 × 1011 Jones, respectively, making the Te/Si devices among the best-performing 2D/3D heterojunction photodetectors. On the whole, this study has established that PLD is a promising technique for producing high-quality Te nanofilms with good scalability, and the Te/Si 2D/3D heterojunction provides a promising platform for implementing high-performance ultra-broadband photoelectronic technologies.

16.
Analyst ; 147(7): 1457-1466, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35266460

RESUMO

A convenient and ultrasensitive ratiometric fluorescent probe was innovatively developed for Hg(II) detection and trypsin activity evaluation based on carbon dots (CDs) and tetraphenylporphyrin tetrasulfonic acid (TPPS) using bovine serum albumin (BSA) as the substrate of trypsin. The ratiometric fluorescence signal arises from CDs (λem = 506 nm) and TPPS (λem = 645 nm) via an inner filter effect. Hg2+ can trigger the formation of TPPS-Mn2+ metalloporphyrin for target Hg2+ recycling amplification, while both TPPS-Hg2+ and TPPS-Mn2+ metalloporphyrins do not affect the fluorescence of CDs. Small amino acids and peptide fragments, which are the products of BSA under the digestion of trypsin, bind stronger with Hg2+ than with TPPS. The decomposition of both TPPS-Hg2+ and TPPS-Mn2+ metalloporphyrins leads to a variation in the ratiometric fluorescence signal. Under optimized conditions, this probe provided an inspiring detection limit of 0.086 nM for Hg2+ and 0.013 ng mL-1 for trypsin, which possessed acceptable sensitivity for Hg2+ detection and trypsin activity evaluation in authentic samples. This unprecedented CD-based ratiometric fluorescence proposal for ultrasensitive quantification of Hg2+ concentration and selective assessment of trypsin activity gives a new insight for designing metal ion assays or enzymatic activity bioassays under different enzymatic substrates in the near future.


Assuntos
Mercúrio , Metaloporfirinas , Pontos Quânticos , Carbono/química , Corantes Fluorescentes/química , Limite de Detecção , Pontos Quânticos/química , Espectrometria de Fluorescência , Tripsina
17.
Small Methods ; 6(2): e2101046, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34935297

RESUMO

Low light absorption and limited carrier lifetime are two limiting factors hampering the further breakthrough of the performance of 2D materials (2DMs)-based photodetectors. This study proposes an ingenious dielectric engineering strategy toward boosting the photosensitivity. Periodic dielectric structures (PDSs), including SiO2 /h-BN, SiO2 /Al2 O3 , and SiO2 /SrTiO3 (STO), are exploited to couple with 2D photosensitive channels (denoted as PDS-2DMs). The responsivity, external quantum efficiency, and detectivity of an optimized SiO2 /STO(300 nm) -WSe2 photodetector reach 89081 A W-1 , 2.7 × 107 %, and 1.8 × 1013 Jones, respectively. These performance metrics are orders of magnitude higher than a pristine WSe2 photodetector, enabling reliable sub-1 pW weak light detection. Based on systematic characterizations and first-principle calculations, such dramatic performance improvement is associated with the promoted direct bandgap transition, reduced exciton binding energy, and PDS-induced periodic intramolecular built-in electric field across the atomically thin channels, which efficiently separates the photoexcited electron-hole pairs. More inspiringly, this strategy is also successfully exploited to 2D WS2 photodetectors, demonstrating broad applicability. As a whole, this work promises an exceptional avenue to ameliorate 2DM photodetectors and opens up a new horizon "dielectric optoelectronics," simultaneously highlighting the role of dielectric environment during analyzing the fundamentals of 2DM devices.

18.
Adv Sci (Weinh) ; 9(1): e2103036, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34719873

RESUMO

2D layered materials (2DLMs) have come under the limelight of scientific and engineering research and broke new ground across a broad range of disciplines in the past decade. Nevertheless, the members of stoichiometric 2DLMs are relatively limited. This renders them incompetent to fulfill the multitudinous scenarios across the breadth of electronic and optoelectronic applications since the characteristics exhibited by a specific material are relatively monotonous and limited. Inspiringly, alloying of 2DLMs can markedly broaden the 2D family through composition modulation and it has ushered a whole new research domain: 2DLM alloy nano-electronics and nano-optoelectronics. This review begins with a comprehensive survey on synthetic technologies for the production of 2DLM alloys, which include chemical vapor transport, chemical vapor deposition, pulsed-laser deposition, and molecular beam epitaxy, spanning their development, as well as, advantages and disadvantages. Then, the up-to-date advances of 2DLM alloys in electronic devices are summarized. Subsequently, the up-to-date advances of 2DLM alloys in optoelectronic devices are summarized. In the end, the ongoing challenges of this emerging field are highlighted and the future opportunities are envisioned, which aim to navigate the coming exploration and fully exert the pivotal role of 2DLMs toward the next generation of electronic and optoelectronic devices.

19.
Mikrochim Acta ; 188(10): 318, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34476614

RESUMO

A facile, economic, and portable test kit based on target-responsive hydrogel with smartphone detection was fabricated for the accurate determination of dichlorvos in tap water and food samples. Carbon dots (CDs) and CdTe quantum dots (QDs) embedded hydrogel were employed as indicator, and fluorescence of CdTe QDs (645 nm) was dynamically quenched by Cu2+ while that of CDs (490 nm) were non-response for Cu2+, em erging a typical ratiometric fluorescence signal. Acetylcholinesterase hydrolyzed acetylthiocholine to generate thiocholine that bound with Cu2+ strongly via S-Cu-S bond. Dichlorvos as competitive inhibitor for acetylcholinesterase prevented the generation of thiocholine, which blocked the formation of Cu-thiocholine complex and changed the ratiometric fluorescence signal. The signal of the test kit, which was recorded by smartphone's camera, was transduced by ImageJ software into the color parameter that was linearly proportional to the logarithm of dichlorvos concentration. This portable test kit showed wide linear range of 1 to 40 ppb and low detection limit of 0.38 ppb for dichlorvos. This test kit exhibited rapid sample-to-answer detection time (50 min) of dichlorvos in tap water and food samples, and the recoveries were in the range 81.3 to 111% with relative standard deviations of less than 9.1%. A facile and economic portable test kit based on CD-CdTe QD target-responsive hydrogel with smartphone was innovatively fabricated for the accurate determination of organophosphorus pesticides. This portable test kit showed low detection limit of 0.38 ppb for dichlorvos and rapid sample-to-answer detection time (50 min) in tap water and food samples, which offered a new sight for portable monitoring of environmental pollution and food safety.

20.
Nanotechnology ; 32(39)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34111857

RESUMO

The pronounced quantum confinement effects, outstanding mechanical strength, strong light-matter interactions and reasonably high electric transport properties under atomically thin limit have conjointly established 2D layered materials (2DLMs) as compelling building blocks towards the next generation optoelectronic devices. By virtue of the diverse compositions and crystal structures which bring about abundant physical properties, multielement 2DLMs (ME2DLMs) have become a bran-new research focus of tremendous scientific enthusiasm. Herein, for the first time, this review provides a comprehensive overview on the latest evolution of ME2DLM photodetectors. The crystal structures, synthesis, and physical properties of various experimentally realized ME2DLMs as well as the development in metal-semiconductor-metal photodetectors are comprehensively summarized by dividing them into narrow-bandgap ME2DLMs (including Bi2O2X (X = S, Se, Te), EuMTe3(M = Bi, Sb), Nb2XTe4(X = Si, Ge), Ta2NiX5(X = S, Se), M2PdX6(M = Ta, Nb; X = S, Se), PbSnS2), moderate-bandgap ME2DLMs (including CuIn7Se11, CuTaS3, GaGeTe, TlMX2(M = Ga, In; X = S, Se)), wide-bandgap ME2DLMs (including BiOX (X = F, Cl, Br, I), MPX3(M = Fe, Ni, Mn, Cd, Zn; X = S, Se), ABP2X6(A = Cu, Ag; B = In, Bi; X = S, Se), Ga2In4S9), as well as topological ME2DLMs (MIrTe4(M = Ta, Nb)). In the last section, the ongoing challenges standing in the way of further development are underscored and the potential strategies settling them are proposed, which is aimed at navigating the future advancement of this fascinating domain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...